Evaluating target silencing by short hairpin RNA mediated by the group I intron in cultured mammalian cells

نویسندگان

  • Kousei Noguchi
  • Yoshio Ishitu
  • Hiroshi Takaku
چکیده

BACKGROUND The group I intron, a ribozyme that catalyzes its own splicing reactions in the absence of proteins in vitro, is a potential target for rational engineering and attracted our interest due to its potential utility in gene repair using trans-splicing. However, the ribozyme activity of a group I intron appears to be facilitated by RNA chaperones in vivo; therefore, the efficiency of self-splicing could be dependent on the structure around the insert site or the length of the sequence to be inserted. To better understand how ribozyme activity could be modulated in cultured mammalian cells, a group I intron was inserted into a short hairpin RNA (shRNA), and silencing of a reporter gene by the shRNA was estimated to reflect self-splicing activity in vivo. In addition, we appended a theophylline-binding aptamer to the ribozyme to investigate any potential effects caused by a trans-effector. RESULTS shRNA-expression vectors in which the loop region of the shRNA was interrupted by an intron were constructed to target firefly luciferase mRNA. There was no remarkable toxicity of the shRNA-expression vectors in Cos cells, and the decrease in luciferase activity was measured as an index of the ribozyme splicing activity. In contrast, the expression of the shRNA through intron splicing was completely abolished in 293T cells, although the silencing induced by the shRNA-expressing vector alone was no different from that in the Cos cells. The splicing efficiency of the aptamer-appended intron also had implications for the potential of trans-factors to differentially promote self-splicing among cultured mammalian cells. CONCLUSIONS Silencing by shRNAs interrupted by a group I intron could be used to monitor self-splicing activity in cultured mammalian cells, and the efficiency of self-splicing appears to be affected by cell-type specific factors, demonstrating the potential effectiveness of a trans-effector.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19

 Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells.  Ai...

متن کامل

Enhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase

Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...

متن کامل

Bcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia

Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...

متن کامل

Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells.

RNA interference (RNAi) was first recognized in Caenorhabditis elegans as a biological response to exogenous double-stranded RNA (dsRNA), which induces sequence-specific gene silencing. RNAi represents a conserved regulatory motif, which is present in a wide range of eukaryotic organisms. Recently, we and others have shown that endogenously encoded triggers of gene silencing act through element...

متن کامل

Generation of single and double knockdowns in polarized epithelial cells by retrovirus-mediated RNA interference.

RNA interference (RNAi) is a ubiquitous mechanism of eukaryotic gene regulation that can be exploited for specific gene silencing. Retroviruses have been successfully used for stable expression of short hairpin RNAs in mammalian cells, leading to persistent inhibition of gene expression by RNAi. Here, we apply retrovirus-mediated RNAi to epithelial Madin-Darby canine kidney cells, whose propert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011